1) Solve using the quadratic formula (and a calculator)  $3x^2 - 4x - 2 = 0$ 



2) Work out  $3.1 \times 10^3 + 2.8 \times 10^2$ 

3) Find the equation of the line perpendicular to y = 2x + 10 passing through the point (6,2)

4) Expand and simplify  $(2x - 3)^2$ 

5) Find the highest common factor of 60 and 84

1) Solve simultaneously: 2x - y = 10 and 5x - 3y = 27



2) Simplify  $\sqrt{45} - \sqrt{20}$ 

3)  $7.5m^2 = ? cm^2$ 

4) Work out the value of  $5x^2 - 2x$  when x = -2

5) Solve by factorising  $9x^2 + 18x + 8 = 0$ 

1) Solve using the quadratic formula (and a calculator)  $4x^2 + 5x - 3 = 0$ 



2) Work out  $1.3 \times 10^3 \times 1.3 \times 10^2$ 

3) Find the equation of the line perpendicular to  $y = -\frac{1}{2}x + 7$  passing through the point (5,2)

4) Expand and simplify  $(3x - 5)^2$ 

5) Find the lowest common multiple of 60 and 84

1) Solve simultaneously:

$$2x - y = 10$$
 and  $5x + 3y = 3$ 



2) Simplify  $\sqrt{5} \times \sqrt{60}$ 

3)  $? m^2 = 500 \text{ cm}^2$ 

4) Work out the value of  $2x^3 + 3x$  when x = -2

5) Solve by factorising  $6x^2 + 17x + 5 = 0$ 



Solve using the quadratic formula (and a calculator)  $3x^2 - 5x - 1 = 0$ 

2) Work out  $5.4 \times 10^3 + 2.6 \times 10^4$ 

3) Find the equation of the line perpendicular to y = -3x + 7 passing through the point (9,6)

4) Expand and simplify  $(5x - 6)^2$ 

5) Find the highest common factor of 60 and 84

## 1) Solve simultaneously:



$$2x - 2y = 22$$
 and  $3x + 6y = -12$ 

2) Simplify 
$$\sqrt{7} \times \sqrt{14}$$

3) 
$$? m^3 = 500 cm^3$$

4) Work out the value of 
$$3x^3 - x^2$$
 when  $x = -2$ 

5) Solve by factorising 
$$6x^2 - 13x - 15 = 0$$